Problem Analysis Session

SWERC judges

November 30, 2017

SWERC judges Problem Analysis Session November 30, 2017 1/31

SWERC judges Problem Analysis Session

Algorithm

Iterate over the two sets and count the occurences of the differences with
a hash map.

O(n?) (time and space)

Python Solution

def solve(A, B): # A, B are list(int).
C = collections.Counter(b - a for b in B for a in A
if b - a >= 0)
occ, negative_offset = max(((C[k], -k) for k in C),
default=(0,0))

return -negative_offset

SWERC judges Problem Analysis Session

Other algorithm in O(n? log(n))

o Maintain a heap containing, for each elemt of the second set, the
smallest time shift for matching an element of the first set.

o lterate over time shifts stored in the heap, update the heap as we go.

O(n?log(n)) in time, O(n) in space.

o In practice, ~ 5x faster than O(n?) solution naively implemented
until memory becomes an issue.

o Cause: CPU stalled on main memory latency (a few tens of ns).

SWERC judges Problem Analysis Session

SWERC judges

B - Table

First simplifications Simplified version

o Lots of ornaments: this is The free area contains only
just a bitmap. separated rectangles:

o Lots of queries = We
compute all the results.

o Fix the low y coordinate of
counted rectangles, then
accumlate.

Cumulative array

o +1 at the size of every red
rectangle

@ Sum twice on x, once on y

SWERC judges Problem Analysis Session November 30, 2017 6 /31

B - Table

What if rectangles intersect?

Count -1 for intersection

Solution of the full problem in O(X x Y + D)

o Enumerate all the maximal free rectangles
o Use classical algorithm: “largest rectangle of zeros”

o Use a cumulative array
o Count +1 for each maximal rectangle, and intersections negatively

SWERC judges Problem Analysis Session November 30, 2017 7/31

C - Macarons

SWERC judges Problem Analysis Session November 30, 2017 8 /31

C - Macarons

The problem

tiling a N x M grid with one of the 120,465 solutions for
monominos and dominos N=4and M=5

Homage -.-
to Pierre Hermé, of course

SWERC judges Problem Analysis Session November 30, 2017 9 /31

C - Macarons

Transition Transition matrix

- T[i][/] is the number of columns with
-- 1 left mask / and right mask j
EEEE 0
- O the number of path of length M from 0
.-- O to 0, that is
1
:) T [0][0]
Algorithmic techniques Complexity
o Fast exponentiation o matrix has size 2N x 2N
@ Matrix multiplication o one multiplication costs (2")3
o Modulo arithmetic o overall complexity is (2V)3 x log(M)

SWERC judges Problem Analysis Session November 30, 2017 10 / 31

SWERC judges Problem Analysis Session

Dynamic programming: Compute F(i, j, require_full_consumption, p, k),
the maximum score of selling the Candy Chain range [i,j) given:

o Prefix [0, k) of child’s portion p was already produced from prefix
[0,i) of the Candy Chain.

o Full consumption of range [i,]) is required depending on
require_full_consumption (boolean).

SWERC judges Problem Analysis Session

Computing F

At state i, j, require_full_consumption, p, k we can:

o Make immediate progress on the current child portion p (if
candy_chain[i] == portions|p][k]) using
F(i + 1, j, require_full_consumption, p, k + 1)

o For m € [i+ 1,j], try to skip candy_chain[i..m) for the current child
portion:

o Maximize score for the skipped range [i, m) using: F(i,m, —1, true)
(require full consumption of this range, no child portion already
consumed)

o Continue current child portion p after the skipped range with:

F(m, j, p, require_full_consumption)

Complexity
O(N* x W) in time, O(N3 x W) in space.

SWERC judges Problem Analysis Session

E - Ingredients

SWERC judges Problem Analysis Session November 30, 2017 14 / 31

E — Ingredients

pizza_base The solution combines shortest paths
and 0/1 knapsack algorithms:

© the recipes form a DAG:
compute first the topological
pizza_cheese .
cheese - sort of the recipe graph, and
then compute in O(N) time the
dish costs;

tomato

cheese

pizza_tomato

pizza_classic

chili salami

@ dynamic program for the
knapsack problem in O(NB),

@) O using the costs and prestiges.

pizza_spicy pizza_salami

SWERC judges Problem Analysis Session November 30, 2017 15 / 31

F - Shattered Cake

SWERC judges Problem Analysis Session November 30, 2017 16 / 31

F — Shattered Cake

W=4
We know that we have all the pieces of the
cake and they cannot be rotated, so we
simply have to divide the total area by the
given width W:
L="7?
[— Z1<i<N w; - I
w
A =24

SWERC judges Problem Analysis Session November 30, 2017 17 / 31

3
Q@
m

c

o
2

©)
O

I
O

G - Cordon bleu

Fitting a known problem

© |If every courier could handle exactly one bottle, we could solve a
maximum bipartite matching problem of minimum weight (a.k.a
assignment problem).

@ By introducing N, — 1 additional virtual couriers starting from the
restaurant, we can represent extra fares by a courier.

© We can now match every bottle with an exclusive courier.

Solving the assignment problem

© The matching can be computed in O(n?) using the Kuhn-Munkres
algorithm (a.k.a the Hungarian method).

SWERC judges Problem Analysis Session November 30, 2017 19 / 31

G - Cordon bleu

One courier (out of two) will take
care of delivering both bottles. @

One virtual courier V; is

introduced at R. @

a & v
4 3 2
4 3 2

= Total cost is 5

SWERC judges Problem Analysis Session November 30, 2017 20 /31

SWERC judges Problem Analysis Session November 30, 2017 21 /31

H - Kabobs

Automaton for rule ABC > XYZ J Algorithmic techniques

@ Remove inaccessible states

o Use a default transition

o Counting paths of given size
Complexity

O(Size of the automaton x #steps)

too much?

SWERC judges Problem Analysis Session November 30, 2017 22 /31

H - Kabobs

Number of states Number of transitions

Each automaton for a rule has A state of the product automaton
rulesize states thus: (s1,...,s) has a rule named ¢
. when at least one the states s; has
##states < avg(rulesize)™"" a rule named ¢ thus
States are determined by #trans <142xr
pending rules and prefix read: #fstates
#states < 271Ules A Jotters

How many exactly?

Combining the above bounds gives us #trans < 3 x 10° and we can even
lower this bound and pass easily!

SWERC judges Problem Analysis Session November 30, 2017 23 /31

| - Burglary

JM .
[J!U\\\\\\\

SWERC judges Problem Analysis Session November 30, 2017 24 /31

| - Burglary

1]‘H|1|1|*l1_ﬁ1 ﬂ_V_FHUI]

j & CTu4r 11 o |
I o -

Solution sketch

Shelves: 0 (topmost) to N (floor). Slots: 0 to M — 1. L = max ladders.
Max(T) = max candy grabbed for a trip with lowest reached shelf = T.
Result = maxj<«_t<_n Max(T)

With P; and P, "up” ladder endpoints:

Max(T) = maxp, p,(MaxUp(T, Py, P2) + Grabbed(T, P1,P2))

© MaxUp(T, Py, P,) = max candy grabbed on 0,..., T — 1 when reaching
("downwards”) T by P; and leaving ("upwards”) T by P,

© Grabbed(T, Py, Py) = all candy from P; to P, + potential "safely
reachable” side candy (left and/or right).

SWERC judges Problem Analysis Session November 30, 2017 25 /31

| - Burglary

1TH|H1|_;1_;_1 11_1_FH|1| 2N
Q1 Q2
| 2 lST“Hl I B |

H PI

Key idea / dynamic programming

Shelves: 0 (topmost) to N (floor). Slots: 0 to M — 1. L = max ladders.
Idea: Compute MaxUp(T, Py, Py) reccursively based on
MaxUp(T = 1, Ql, Qz), Grabbed(T = 1, P1, Q]), Grabbed(T =].7 P2, Qz)

@ Consider all @1, @ = "up” ladder endpoints for T — 1

Vi

@ Discard configs with jars in the intersection (not safe); avoid counting
"middle" side candy twice.

Time complexity for all shelves: O(N * L* x Compl_Grabbed)

SWERC judges Problem Analysis Session November 30, 2017 26 / 31

| - Burglary

Essential observation

Grabbed(T, Py, P2) can be computed in constant time for any
(T, P1, Pp) if one precomputes for all slots on all shelves:

@ closest jar position left and right

o partial sums SumLeft[T, P]=sum of all candy on T left to P.
Precomputation: O(N « M)
Overall complexity = O(N * M + N x L*).

@ Intersection tests + side candy = slight headache

@ "Smaller” optims possible such as exploiting symmmetry, keeping
only two rows for MaxUp...

@ Tests may not be exhaustive but the Bandit is happy!

v

SWERC judges Problem Analysis Session November 30, 2017 27 /31

J - Frosting on the Cake

A1 Ay As Ag AsAg Ap

By

B;

B3

By

Bs

Bg

Bn

SWERC judges Problem Analysis Session November 30, 2017 28 /31

J - Frosting on the Cake

Key observation

Permuting columns or rows preserve the total area of each color. Hence
we can reduce to a 3 by 3 grid, the dimensions are given by the sum of the
entry lengths of same base 3 modulo.

Python Solution

def read_ints(): return [int(x) for x in input().split ()]
def cat(l): return tuple(sum(l[n::3]) for n in [1, 2, 0])

input () # n

A = cat(read_ints ())

B = cat(read_ints ())

print ("{} {} {}".format(B[2]*A[0]+B[0]*A[2]+B[1]*A[1],
B[2]*xA[1]+B[0]l*xA[0]+B[1]1xA[2],
B[2]*xA[2]+B[0]*xA[1]1+B[11*xA[0]))

SWERC judges Problem Analysis Session November 30, 2017 29 /31

SWERC judges Problem Analysis Session

Key observation

The narrowest strip touches 3 points of the convex
hull, 2 of them being consecutive on the hull

Algorithm

o

o Compute and restrict to convex hull in
O(nlog n)
o Loop over all consecutive point pairs (a, b)

o Maintain a point ¢ being furthest from (a, b) in
O(n) amortized time.

SWERC judges Problem Analysis Session

[

