Problem Analysis Session

SWERC judges

November 30, 2017

A - Cakey McCakeFace

A - Cakey McCakeFace

Algorithm

Iterate over the two sets and count the occurences of the differences with a hash map.

Complexity

 $O(n^2)$ (time and space)

Python Solution

Other algorithm in $O(n^2 \log(n))$

- Maintain a heap containing, for each elemt of the second set, the smallest time shift for matching an element of the first set.
- Iterate over time shifts stored in the heap, update the heap as we go.

 $O(n^2 \log(n))$ in time, O(n) in space.

Running time

- In practice, $\sim 5x$ faster than $O(n^2)$ solution naively implemented until memory becomes an issue.
- Cause: CPU stalled on main memory latency (a few tens of ns).

B - Table

B - Table

First simplifications

- Lots of ornaments: this is just a bitmap.
- Lots of queries ⇒ We compute all the results.
- Fix the low y coordinate of counted rectangles, then accumlate.

Simplified version

The **free** area contains only **separated rectangles**:

Cumulative array

- +1 at the size of every red rectangle
- Sum twice on x, once on y

B - Table

What if rectangles intersect?

Solution of the full problem in $O(X \times Y + D)$

- Enumerate all the maximal free rectangles
 - Use classical algorithm: "largest rectangle of zeros"
- Use a cumulative array
 - $\bullet\,$ Count +1 for each maximal rectangle, and intersections negatively

C - Macarons

The problem

tiling a $N \times M$ grid with monominos and dominos

Homage

to Pierre Hermé, of course

Example

one of the 120,465 solutions for N = 4 and M = 5

C - Macarons

Transition matrix

 $\mathcal{T}[i][j]$ is the number of columns with left mask i and right mask j

Solution

the number of path of length ${\cal M}$ from 0 to 0, that is

T^M[0][0]

Algorithmic techniques

- Fast exponentiation
- Matrix multiplication
- Modulo arithmetic

Complexity

- matrix has size $2^N \times 2^N$
- one multiplication costs $(2^N)^3$
- overall complexity is $(2^N)^3 \times \log(M)$

D - Candy Chain

Key idea

Dynamic programming: Compute $F(i, j, require_full_consumption, p, k)$, the maximum score of selling the Candy Chain range [i, j) given:

- Prefix [0, k) of child's portion p was already produced from prefix [0, i) of the Candy Chain.
- Full consumption of range [i, j) is required depending on require_full_consumption (boolean).

D - Candy Chain

Computing \mathbf{F}

At state $i, j, require_full_consumption, p, k$ we can:

- Make immediate progress on the current child portion p (if candy_chain[i] == portions[p][k]) using
 F(i + 1, j, require_full_consumption, p, k + 1)
- For $m \in [i+1,j],$ try to skip $candy_chain[i..m)$ for the current child portion:
 - Maximize score for the skipped range [i,m) using: $\mathsf{F}(i,m,-1,true)$ (require full consumption of this range, no child portion already consumed)
 - Continue current child portion p after the skipped range with: $F(m,j,p,require_full_consumption)$

Complexity

 $O(N^4 \times W)$ in time, $O(N^3 \times W)$ in space.

E - Ingredients

The solution combines *shortest paths* and 0/1 *knapsack* algorithms:

- the recipes form a DAG: compute first the topological sort of the recipe graph, and then compute in O(N) time the dish costs;
- dynamic program for the knapsack problem in O(NB), using the costs and prestiges.

F - Shattered Cake

We know that we have all the pieces of the cake and they cannot be rotated, so we simply have to divide the *total area* by the given width *W*:

$$L=\frac{\sum_{1\leqslant i\leqslant N}w_i\cdot l_i}{W}.$$

November 30, 2017 17

G - Cordon Bleu

Fitting a known problem

- If every courier could handle exactly one bottle, we could solve a maximum bipartite matching problem of minimum weight (*a.k.a* assignment problem).
- By introducing $N_b 1$ additional virtual couriers starting from the restaurant, we can represent extra fares by a courier.
- We can now match every bottle with an exclusive courier.

Solving the assignment problem

• The matching can be computed in $O(n^3)$ using the Kuhn-Munkres algorithm (*a.k.a* the Hungarian method).

G - Cordon bleu

Example

One courier (out of two) will take care of delivering both bottles. One virtual courier V_1 is introduced at R.

 \Rightarrow Total cost is 5

H - Kabobs

Automaton for rule ABC > XYZ

Algorithmic techniques

- Remove inaccessible states
- Use a default transition
- Counting paths of given size

Complexity

 $O(Size of the automaton \times #steps)$

too much?

H - Kabobs

Number of states

Each automaton for a rule has *rulesize* states thus:

#states $\leq avg(rulesize)^{\#rules}$

States are determined by pending rules and prefix read:

```
\#states \leq 2^{\#rules} * \#letters
```

Number of transitions

A state of the product automaton (s_1, \ldots, s_r) has a rule named c when at least one the states s_i has a rule named c thus

$$\frac{\# trans}{\# states} \le 1 + 2 \times r$$

How many exactly?

Combining the above bounds gives us $\#trans < 3 \times 10^6$ and we can even lower this bound and pass easily!

Solution sketch

Shelves: 0 (topmost) to *N* (floor). Slots: 0 to M - 1. $L = \max$ ladders. $Max(T) = \max candy grabbed for a trip with lowest reached shelf = T.$ $Result = \max_{1 \le T \le N} Max(T)$ With P_1 and P_2 "up" ladder endpoints: $Max(T) = \max_{P_1,P_2}(MaxUp(T, P_1, P_2) + Grabbed(T, P1, P2))$

- MaxUp(T, P₁, P₂) = max candy grabbed on 0,..., T 1 when reaching ("downwards") T by P₁ and leaving ("upwards") T by P₂
- $Grabbed(T, P_1, P_2) = all candy from P_1 to P_2 + potential "safely reachable" side candy (left and/or right).$

Key idea / dynamic programming

Shelves: 0 (topmost) to N (floor). Slots: 0 to M - 1. $L = \max$ ladders. Idea: Compute MaxUp(T, P₁, P₂) reccursively based on MaxUp(T - 1, Q₁, Q₂), Grabbed(T - 1, P₁, Q₁), Grabbed(T - 1, P₂, Q₂).

- Consider all Q_1 , $Q_2 = "up"$ ladder endpoints for T-1
- Discard configs with jars in the intersection (not safe); avoid counting "middle" side candy twice.

Time complexity for all shelves: $O(N * L^4 * Compl_Grabbed)$

Essential observation

Grabbed(T, P_1 , P_2) can be computed in constant time for any (T, P_1 , P_2) if one precomputes for all slots on all shelves:

- closest jar position left and right
- partial sums SumLeft[T, P]=sum of all candy on T left to P.

Precomputation: O(N * M)

And so ...

Overall complexity = $O(N * M + N * L^4)$.

- Intersection tests + side candy = slight headache
- "Smaller" optims possible such as exploiting symmetry, keeping only two rows for *MaxUp*...
- Tests may not be exhaustive but the Bandit is happy!

J - Frosting on the Cake

SWERC judges

November 30, 2017 28 / 31

Key observation

Permuting columns or rows preserve the total area of each color. Hence we can reduce to a 3 by 3 grid, the dimensions are given by the sum of the entry lengths of same base 3 modulo.

Python Solution

K - Blowing Candles

Key observation

The narrowest strip touches 3 points of the convex hull, 2 of them being consecutive on the hull

Algorithm

- Compute and restrict to convex hull in O(n log n)
- Loop over all consecutive point pairs (a, b)
- Maintain a point *c* being furthest from (*a*, *b*) in O(n) amortized time.

