
Problem Analysis Session

SWERC judges

November 30, 2017

SWERC judges Problem Analysis Session November 30, 2017 1 / 31



A - Cakey McCakeFace

SWERC judges Problem Analysis Session November 30, 2017 2 / 31



A - Cakey McCakeFace

Algorithm

Iterate over the two sets and count the occurences of the differences with
a hash map.

Complexity

O(n2) (time and space)

Python Solution

def solve(A, B): # A, B are list(int).

C = collections.Counter(b - a for b in B for a in A

if b - a >= 0)

occ , negative_offset = max (((C[k], -k) for k in C),

default =(0 ,0))

return -negative_offset

SWERC judges Problem Analysis Session November 30, 2017 3 / 31



A - Cakey McCakeFace

Other algorithm in O(n2 log(n))

Maintain a heap containing, for each elemt of the second set, the
smallest time shift for matching an element of the first set.

Iterate over time shifts stored in the heap, update the heap as we go.

O(n2 log(n)) in time, O(n) in space.

Running time

In practice, ∼ 5x faster than O(n2) solution naively implemented
until memory becomes an issue.

Cause: CPU stalled on main memory latency (a few tens of ns).

SWERC judges Problem Analysis Session November 30, 2017 4 / 31



B - Table

SWERC judges Problem Analysis Session November 30, 2017 5 / 31



B - Table

First simplifications

Lots of ornaments: this is
just a bitmap.

Lots of queries ⇒ We
compute all the results.

Fix the low y coordinate of
counted rectangles, then
accumlate.

Simplified version

The free area contains only
separated rectangles:

Cumulative array

+1 at the size of every red
rectangle

Sum twice on x , once on y

SWERC judges Problem Analysis Session November 30, 2017 6 / 31



B - Table

What if rectangles intersect?

Count -1 for intersection

Solution of the full problem in O(X × Y + D)

Enumerate all the maximal free rectangles

Use classical algorithm: “largest rectangle of zeros”

Use a cumulative array

Count +1 for each maximal rectangle, and intersections negatively

SWERC judges Problem Analysis Session November 30, 2017 7 / 31



C - Macarons

SWERC judges Problem Analysis Session November 30, 2017 8 / 31



C - Macarons

The problem

tiling a N ×M grid with
monominos and dominos

Homage

to Pierre Hermé, of course

Example

one of the 120,465 solutions for
N = 4 and M = 5

SWERC judges Problem Analysis Session November 30, 2017 9 / 31



C - Macarons

Transition

1
0
0
0

Transition matrix

T [i ][j ] is the number of columns with
left mask i and right mask j

Solution

the number of path of length M from 0
to 0, that is

TM [0][0]

Algorithmic techniques

Fast exponentiation

Matrix multiplication

Modulo arithmetic

Complexity

matrix has size 2N × 2N

one multiplication costs (2N)3

overall complexity is (2N)3× log(M)

SWERC judges Problem Analysis Session November 30, 2017 10 / 31



D - Candy Chain

SWERC judges Problem Analysis Session November 30, 2017 11 / 31



D - Candy Chain

Key idea

Dynamic programming: Compute F(i, j, require full consumption,p, k),
the maximum score of selling the Candy Chain range [i, j) given:

Prefix [0, k) of child’s portion p was already produced from prefix
[0, i) of the Candy Chain.

Full consumption of range [i, j) is required depending on
require full consumption (boolean).

SWERC judges Problem Analysis Session November 30, 2017 12 / 31



D - Candy Chain

Computing F

At state i, j, require full consumption,p, k we can:

Make immediate progress on the current child portion p (if
candy chain[i] == portions[p][k]) using
F(i + 1, j, require full consumption,p, k + 1)

For m ∈ [i + 1, j], try to skip candy chain[i..m) for the current child
portion:

Maximize score for the skipped range [i,m) using: F(i,m,−1, true)
(require full consumption of this range, no child portion already
consumed)
Continue current child portion p after the skipped range with:
F(m, j,p, require full consumption)

Complexity

O(N4 ×W ) in time, O(N3 ×W ) in space.

SWERC judges Problem Analysis Session November 30, 2017 13 / 31



E - Ingredients

SWERC judges Problem Analysis Session November 30, 2017 14 / 31



E – Ingredients

pizza_base

pizza_classic

pizza_tomato pizza_cheese

pizza_spicy pizza_salami

cheese

cheese

tomato

tomato

chili salami

The solution combines shortest paths
and 0/1 knapsack algorithms:

1 the recipes form a DAG:
compute first the topological
sort of the recipe graph, and
then compute in O(N) time the
dish costs;

2 dynamic program for the
knapsack problem in O(NB),
using the costs and prestiges.

SWERC judges Problem Analysis Session November 30, 2017 15 / 31



F - Shattered Cake

SWERC judges Problem Analysis Session November 30, 2017 16 / 31



F – Shattered Cake

W = 4

L= ?

A = 24

We know that we have all the pieces of the
cake and they cannot be rotated, so we
simply have to divide the total area by the
given width W :

L =

∑
16i6N wi · li

W
.

SWERC judges Problem Analysis Session November 30, 2017 17 / 31



G - Cordon Bleu

SWERC judges Problem Analysis Session November 30, 2017 18 / 31



G - Cordon bleu

Fitting a known problem

1 If every courier could handle exactly one bottle, we could solve a
maximum bipartite matching problem of minimum weight (a.k.a
assignment problem).

2 By introducing Nb − 1 additional virtual couriers starting from the
restaurant, we can represent extra fares by a courier.

3 We can now match every bottle with an exclusive courier.

Solving the assignment problem

1 The matching can be computed in O(n3) using the Kuhn-Munkres
algorithm (a.k.a the Hungarian method).

SWERC judges Problem Analysis Session November 30, 2017 19 / 31



G - Cordon bleu

Example

One courier (out of two) will take
care of delivering both bottles.
One virtual courier V1 is
introduced at R.

C1

C2

V1

B1

B2

3

2

C1

C2

B1

B2

R

C1 C2 V1

B1 4 3 2
B2 4 3 2

⇒ Total cost is 5

SWERC judges Problem Analysis Session November 30, 2017 20 / 31



H - Kabobs

A B W WP P W M C

SWERC judges Problem Analysis Session November 30, 2017 21 / 31



H - Kabobs

Automaton for rule ABC > XYZ

εstart

A

AB ABC

X

XY

∗

∗

A

A

AB

C

X

X

X Y

Z

∗

∗

∗

∗

Algorithmic techniques

Remove inaccessible states

Use a default transition

Counting paths of given size

Complexity

O(Size of the automaton×#steps)

too much?

SWERC judges Problem Analysis Session November 30, 2017 22 / 31



H - Kabobs

Number of states

Each automaton for a rule has
rulesize states thus:

#states ≤ avg(rulesize)#rules

States are determined by
pending rules and prefix read:

#states ≤ 2#rules ∗#letters

Number of transitions

A state of the product automaton
(s1, . . . , sr ) has a rule named c
when at least one the states si has
a rule named c thus

#trans

#states
≤ 1 + 2× r

How many exactly?

Combining the above bounds gives us #trans < 3× 106 and we can even
lower this bound and pass easily!

SWERC judges Problem Analysis Session November 30, 2017 23 / 31



I - Burglary

1 1 1 1 1 5 3 1 1 11

9

9 47

1 1 1 1 1 1 1 3

SWERC judges Problem Analysis Session November 30, 2017 24 / 31



I - Burglary

Solution sketch

Shelves: 0 (topmost) to N (floor). Slots: 0 to M − 1. L = max ladders.
Max(T) = max candy grabbed for a trip with lowest reached shelf = T.
Result = max1<=T<=N Max(T)
With P1 and P2 ”up” ladder endpoints:
Max(T) = maxP1,P2(MaxUp(T,P1,P2) + Grabbed(T,P1,P2))

MaxUp(T ,P1,P2) = max candy grabbed on 0, . . . ,T − 1 when reaching
(”downwards”) T by P1 and leaving (”upwards”) T by P2

Grabbed(T ,P1,P2) = all candy from P1 to P2 + potential ”safely
reachable” side candy (left and/or right).

SWERC judges Problem Analysis Session November 30, 2017 25 / 31



I - Burglary

Key idea / dynamic programming

Shelves: 0 (topmost) to N (floor). Slots: 0 to M − 1. L = max ladders.
Idea: Compute MaxUp(T,P1,P2) reccursively based on
MaxUp(T− 1,Q1,Q2), Grabbed(T− 1,P1,Q1), Grabbed(T− 1,P2,Q2).

Consider all Q1, Q2 = ”up” ladder endpoints for T − 1

Discard configs with jars in the intersection (not safe); avoid counting
”middle” side candy twice.

Time complexity for all shelves: O(N ∗ L4 ∗ Compl Grabbed)

SWERC judges Problem Analysis Session November 30, 2017 26 / 31



I - Burglary

Essential observation

Grabbed(T,P1,P2) can be computed in constant time for any
(T ,P1,P2) if one precomputes for all slots on all shelves:

closest jar position left and right

partial sums SumLeft[T ,P]=sum of all candy on T left to P.

Precomputation: O(N ∗M)

And so...

Overall complexity = O(N ∗M + N ∗ L4).

Intersection tests + side candy = slight headache

”Smaller” optims possible such as exploiting symmmetry, keeping
only two rows for MaxUp...

Tests may not be exhaustive but the Bandit is happy!

SWERC judges Problem Analysis Session November 30, 2017 27 / 31



J - Frosting on the Cake

A1 A2 A3 A4 A5 A6 An

B1

B2

B3

B4

B5

B6

Bn

SWERC judges Problem Analysis Session November 30, 2017 28 / 31



J - Frosting on the Cake

Key observation

Permuting columns or rows preserve the total area of each color. Hence
we can reduce to a 3 by 3 grid, the dimensions are given by the sum of the
entry lengths of same base 3 modulo.

Python Solution

def read_ints (): return [int(x) for x in input (). split ()]

def cat(l): return tuple(sum(l[n::3]) for n in [1, 2, 0])

input () # n

A = cat(read_ints ())

B = cat(read_ints ())

print("{} {} {}".format(B[2]*A[0]+B[0]*A[2]+B[1]*A[1],

B[2]*A[1]+B[0]*A[0]+B[1]*A[2],

B[2]*A[2]+B[0]*A[1]+B[1]*A[0]))

SWERC judges Problem Analysis Session November 30, 2017 29 / 31



K - Blowing Candles

SWERC judges Problem Analysis Session November 30, 2017 30 / 31



K - Blowing Candles

Key observation

The narrowest strip touches 3 points of the convex
hull, 2 of them being consecutive on the hull

Algorithm

Compute and restrict to convex hull in
O(n log n)

Loop over all consecutive point pairs (a, b)

Maintain a point c being furthest from (a, b) in
O(n) amortized time.

a

b

c

SWERC judges Problem Analysis Session November 30, 2017 31 / 31


