Problem Analysis Session

SWERC judges

November 30, 2017

A - Cakey McCakeFace

A - Cakey McCakeFace

Algorithm

Iterate over the two sets and count the occurences of the differences with a hash map.

Complexity

$O\left(n^{2}\right)$ (time and space)

Python Solution

```
def solve(A, B): # A, B are list(int).
    C = collections.Counter(b - a for b in B for a in A
        if b - a >= 0)
    occ, negative_offset = max(((C[k], -k) for k in C),
                        default=(0,0))
    return -negative_offset
```


Other algorithm in $O\left(n^{2} \log (n)\right)$

- Maintain a heap containing, for each elemt of the second set, the smallest time shift for matching an element of the first set.
- Iterate over time shifts stored in the heap, update the heap as we go. $O\left(n^{2} \log (n)\right)$ in time, $O(n)$ in space.

Running time

- In practice, $\sim 5 x$ faster than $O\left(n^{2}\right)$ solution naively implemented until memory becomes an issue.
- Cause: CPU stalled on main memory latency (a few tens of ns).

B - Table

B - Table

First simplifications

- Lots of ornaments: this is just a bitmap.
- Lots of queries $\Rightarrow \mathrm{We}$ compute all the results.
- Fix the low y coordinate of counted rectangles, then accumlate.

Simplified version

The free area contains only separated rectangles:

Cumulative array

- +1 at the size of every red rectangle
- Sum twice on x, once on y

B - Table

What if rectangles intersect?

Count -1 for intersection

Solution of the full problem in $O(X \times Y+D)$

- Enumerate all the maximal free rectangles
- Use classical algorithm: "largest rectangle of zeros"
- Use a cumulative array
- Count +1 for each maximal rectangle, and intersections negatively

C - Macarons

C - Macarons

The problem

tiling a $N \times M$ grid with monominos and dominos

Homage

to Pierre Hermé, of course

Example

 one of the 120,465 solutions for $N=4$ and $M=5$

C - Macarons

Transition

Algorithmic techniques

- Fast exponentiation
- Matrix multiplication
- Modulo arithmetic

Transition matrix

$T[i][j]$ is the number of columns with left mask i and right mask j

Solution

the number of path of length M from 0 to 0 , that is

$$
T^{M}[0][0]
$$

Complexity

- matrix has size $2^{N} \times 2^{N}$
- one multiplication costs $\left(2^{N}\right)^{3}$
- overall complexity is $\left(2^{N}\right)^{3} \times \log (M)$

D - Candy Chain

Key idea

Dynamic programming: Compute $\mathbf{F}(\mathbf{i}, \mathbf{j}$, require_full_consumption, $\mathbf{p}, \mathbf{k})$, the maximum score of selling the Candy Chain range $[\mathbf{i}, \mathbf{j})$ given:

- Prefix $[\mathbf{0}, \mathbf{k})$ of child's portion \mathbf{p} was already produced from prefix $[\mathbf{0}, \mathbf{i})$ of the Candy Chain.
- Full consumption of range $[\mathbf{i}, \mathbf{j})$ is required depending on require_full_consumption (boolean).

D - Candy Chain

Computing F

At state \mathbf{i}, \mathbf{j}, require_full_consumption, \mathbf{p}, \mathbf{k} we can:

- Make immediate progress on the current child portion \mathbf{p} (if candy_chain $[\mathbf{i}]==$ portions $[\mathbf{p}][\mathbf{k}]$) using $\mathbf{F}(\mathbf{i}+\mathbf{1}, \mathbf{j}$, require_full_consumption, $\mathbf{p}, \mathbf{k}+\mathbf{1})$
- For $\mathbf{m} \in[\mathbf{i}+\mathbf{1}, \mathbf{j}]$, try to skip candy_chain $[\mathbf{i} . . \mathbf{m})$ for the current child portion:
- Maximize score for the skipped range [i,m) using: $\mathbf{F}(\mathbf{i}, \mathbf{m},-\mathbf{1}$, true $)$ (require full consumption of this range, no child portion already consumed)
- Continue current child portion \mathbf{p} after the skipped range with: $\mathbf{F}(\mathbf{m}, \mathbf{j}, \mathbf{p}$, require_full_consumption)

Complexity

$O\left(N^{4} \times W\right)$ in time, $O\left(N^{3} \times W\right)$ in space.

E - Ingredients

E - Ingredients

The solution combines shortest paths and $0 / 1$ knapsack algorithms:
(1) the recipes form a DAG: compute first the topological sort of the recipe graph, and then compute in $O(N)$ time the dish costs;
(2) dynamic program for the knapsack problem in $O(N B)$, using the costs and prestiges.

F - Shattered Cake

F - Shattered Cake

W = 4

We know that we have all the pieces of the cake and they cannot be rotated, so we simply have to divide the total area by the given width W :

$$
L=\frac{\sum_{1 \leqslant i \leqslant N} w_{i} \cdot l_{i}}{W}
$$

G - Cordon Bleu

G - Cordon bleu

Fitting a known problem

(1) If every courier could handle exactly one bottle, we could solve a maximum bipartite matching problem of minimum weight (a.k.a assignment problem).
(2) By introducing $N_{b}-1$ additional virtual couriers starting from the restaurant, we can represent extra fares by a courier.
(3) We can now match every bottle with an exclusive courier.

Solving the assignment problem

(1) The matching can be computed in $O\left(n^{3}\right)$ using the Kuhn-Munkres algorithm (a.k.a the Hungarian method).

G - Cordon bleu

Example

One courier (out of two) will take care of delivering both bottles.
One virtual courier V_{1} is introduced at R.

	C_{1}	C_{2}	V_{1}
B_{1}	4	$\mathbf{3}$	2
B_{2}	4	3	$\mathbf{2}$
\Rightarrow	Total cost is 5		

H - Kabobs

$A=B=W=P=W=P=W=M=C$

H - Kabobs

Automaton for rule $A B C>X Y Z$

Algorithmic techniques

- Remove inaccessible states
- Use a default transition
- Counting paths of given size

Complexity

O (Size of the automaton $\times \#$ steps)

too much?

H - Kabobs

Number of states

Each automaton for a rule has rulesize states thus:

$$
\# \text { states } \leq \operatorname{avg}(\text { rulesize })^{\# \text { rules }}
$$

States are determined by pending rules and prefix read:

$$
\# \text { states } \leq 2^{\# \text { rules }} * \# \text { letters }
$$

Number of transitions

A state of the product automaton $\left(s_{1}, \ldots, s_{r}\right)$ has a rule named c when at least one the states s_{i} has a rule named c thus

$$
\frac{\# \text { trans }}{\# \text { states }} \leq 1+2 \times r
$$

How many exactly?

Combining the above bounds gives us \#trans $<3 \times 10^{6}$ and we can even lower this bound and pass easily!

I - Burglary

I - Burglary

Solution sketch

Shelves: 0 (topmost) to N (floor). Slots: 0 to $M-1$. $L=$ max ladders.
$\operatorname{Max}(\mathbf{T})=\boldsymbol{m a x}$ candy grabbed for a trip with lowest reached shelf $=\mathbf{T}$.
Result $=\max _{1<=\mathbf{T}<=\mathrm{N}} \operatorname{Max}(\mathbf{T})$
With P_{1} and P_{2} "up" ladder endpoints:
$\operatorname{Max}(\mathbf{T})=\max _{\mathbf{P}_{1}, \mathbf{P}_{\mathbf{2}}}\left(\mathbf{M a x U p}\left(\mathbf{T}, \mathbf{P}_{\mathbf{1}}, \mathbf{P}_{\mathbf{2}}\right)+\mathbf{G r a b b e d}(\mathbf{T}, \mathbf{P} 1, \mathbf{P} 2)\right)$

- $\operatorname{Max} U p\left(T, P_{1}, P_{2}\right)=$ max candy grabbed on $0, \ldots, T-1$ when reaching ("downwards") T by P_{1} and leaving ("upwards") T by P_{2}
- $\operatorname{Grabbed}\left(T, P_{1}, P_{2}\right)=$ all candy from P_{1} to $P_{2}+$ potential "safely reachable" side candy (left and/or right).

I - Burglary

Key idea / dynamic programming

Shelves: 0 (topmost) to N (floor). Slots: 0 to $M-1$. $L=$ max ladders.
Idea: Compute $\operatorname{Max} \mathrm{Up}\left(\mathbf{T}, \mathrm{P}_{\mathbf{1}}, \mathrm{P}_{2}\right)$ reccursively based on $\operatorname{MaxUp}\left(\mathbf{T}-1, \mathbf{Q}_{1}, \mathbf{Q}_{2}\right)$, $\operatorname{Grabbed}\left(\mathbf{T}-\mathbf{1}, \mathbf{P}_{1}, \mathbf{Q}_{1}\right), \operatorname{Grabbed}\left(\mathbf{T}-\mathbf{1}, \mathbf{P}_{2}, \mathbf{Q}_{2}\right)$.

- Consider all $Q_{1}, Q_{2}=$ "up" ladder endpoints for $T-1$
- Discard configs with jars in the intersection (not safe); avoid counting " middle" side candy twice.

Time complexity for all shelves: $\mathbf{O}\left(\mathbf{N} * \mathbf{L}^{4} *\right.$ Compl_Grabbed)

I - Burglary

Essential observation

Grabbed($\mathbf{T}, \mathbf{P}_{\mathbf{1}}, \mathbf{P}_{\mathbf{2}}$) can be computed in constant time for any (T, P_{1}, P_{2}) if one precomputes for all slots on all shelves:

- closest jar position left and right
- partial sums SumLeft $[T, P]=$ sum of all candy on T left to P.

Precomputation: $\mathbf{O}(\mathbf{N} * \mathbf{M})$

And so...

Overall complexity $=\mathbf{O}\left(\mathbf{N} * \mathbf{M}+\mathbf{N} * \mathbf{L}^{4}\right)$.

- Intersection tests + side candy $=$ slight headache
- "Smaller" optims possible such as exploiting symmmetry, keeping only two rows for MaxUp...
- Tests may not be exhaustive but the Bandit is happy!

J - Frosting on the Cake

J - Frosting on the Cake

Key observation

Permuting columns or rows preserve the total area of each color. Hence we can reduce to a 3 by 3 grid, the dimensions are given by the sum of the entry lengths of same base 3 modulo.

Python Solution

```
def read_ints(): return [int(x) for x in input().split()]
def cat(l): return tuple(sum(l[n::3]) for n in [1, 2, 0])
input() # n
A = cat(read_ints())
B = cat(read_ints())
print("{} {} {}".format(B[2]*A[0]+B[0]*A[2]+B[1]*A[1],
    B [2]*A[1]+B[0]*A[0] + B[1]*A[2],
    B[2]*A[2] + B[0]*A[1] +B[1]*A[0]))
```

K - Blowing Candles

Key observation

The narrowest strip touches 3 points of the convex hull, 2 of them being consecutive on the hull

Algorithm

- Compute and restrict to convex hull in $O(n \log n)$
- Loop over all consecutive point pairs (a, b)
- Maintain a point c being furthest from (a, b) in $O(n)$ amortized time.

